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Abstract1 

 
The sound field temporal correlation and spatial 

correlation, which are the foundation of the investigation 
of underwater signal space-time high-order characteristics, 
have important value in the underwater acoustic 
application. The spatial correlation is studied based on the 
shallow water acoustic propagation experiment data 
acquired in the northern South China Sea in 2017, and the 
deep water acoustic propagation experiment data acquired 
in the western Pacific in 2013. As for the explosive sound 
signals in shallow water, time domain waveform 
cross-correlation coefficients between signals from 
different propagation distance are calculated. In contrast, 
the linear frequency modulated signals in deep water need 
additional matched filtering. The signal processing results 
shows that, the overall spatial correlation is poor and the 
correlation radius is relatively small in shallow water, the 
convergence zone has an obviously better spatial 
correlation than the shadow zone for the deep water 
situation. The processing result is verified by simulation 
and analysis. 
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I. INTRODUCTION 

 
With the method of computing ocean sound field becoming 

more and more accurate, the spatial characteristics of sound 
field, which are very important in the underwater acoustic 
application, are increasingly concerned. Spatial correlation is 
consisted of the horizontal transverse correlation, the 
horizontal longitudinal correlation and the vertical correlation. 
The horizontal longitudinal correlation depends on the 
multipath or multimode propagation and the random 
fluctuation of medium. The vertical correlation depends on the 
multipath or multimode propagation. In the paper, 
experimental and numerical research shows some 
characteristics of the horizontal longitudinal correlation. 
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II. THEORY 

 
A. Correlation Coefficient 
Correlation coefficient between two signals can be expressed 

the maximum absolute value of delay correlation between two 
signals, and the delay correlation can be expressed as follow: 
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In equation 1,   represents time delay, P  represents sound 
pressure, 1 2( , , )COR P P   represents delay correlation 

between sound pressure 1P  and 2P , t  represents time. 
B. Method of Data Processing 
In order to get the correlation coefficient between two signals, 

the procedures includes two steps as follow. 
①Determination of time delay 
In the first step, the time delay between two signals can 

determined by take the maximum value of time domain 
correlation. 
②Wave form correlation coefficient 
In the second step, the two signals are shifted to the 

maximum agreement according the time delay. Then the wave 
form correlation coefficient is calculated as the correlation 
coefficient between the two signals. 

 
III. EXPERIMENT 

 
A. Shallow Water Experiment 
A shallow water acoustical experiment was performed in the 

northern South China Sea in 2017. Explosive charges [100-g 
charges of trinitrotoluene (TNT)] were used as the sources. The 
source depth was 50 m below the sea surface. The bathymetry 
was almost flat between the source and receiver, the mean 
water depth was 120 m. The received signals was recorded by a 
19-element, 85m-length vertical line array. 

Figure 1 and figure 2 show the normalized waveform of the 
signals recorded by the first and second hydrophones, and the 
source range recorded by the Global Position System (GPS) 
was 10.1 km. Figure 3 and figure 4 show the normalized 
waveform of the signals recorded by the first and second 
hydrophones, and the source range recorded by the Global 
Position System (GPS) was 100.2 km. According to the 
waveforms, all signals in different range had high signal to 
noise ratio. 
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Fig. 1 Normalized waveform of the signal emitted at 10.1 km range 
recorded by the first hydrophone. 

 
Fig. 2 Normalized waveform of the signal emitted at 10.1 km range 
recorded by the second hydrophone. 

 
Fig. 3 Normalized waveform of the signal emitted at 100.1 km range 
by the first hydrophone. 

 
Fig. 4 Normalized waveform of the signal emitted at 100.2 km range 
by the second hydrophone. 

Figure 5 and figure 6 show the correlation coefficient 
between the signals from different ranges recorded by the first 
and second hydrophone. According to the results, the 
correlation coefficient between received explosive sound 
signals are relatively poor in shallow water, and the correlation 
radius is relatively small. 

 
Fig. 5 Correlation coefficient between the signals from different 
ranges recorded by the first hydrophone. 

 
Fig. 6 Correlation coefficient between the signals from different 
ranges recorded by the second hydrophone. 

Figure 7 shows the correlation coefficient of the signals 
recorded by the first and second hydrophone. According to 
figure 7, the correlation coefficient between two hydrophones 
is very good. 
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Fig. 7 Correlation coefficient of the signals recorded by the first and 
second hydrophone. 

 
B. Deep Water Experiment 
A deep water acoustical experiment was performed in the 

western Pacific in 2013. Towed transducer was used as the 
sources. Linear frequency modulation (LFM) signal, which’s 
frequency changed from 260 Hz to 360 Hz linearly, was 
emitted once per 160 seconds as the source signal. The source 
depth was 100 m below the sea surface. The bathymetry was 
almost flat between the source and receiver, the mean water 
depth was 5100 m. The received signals was recorded by a 
20-element vertical line array. 

Figure 8, figure 9, figure 10 and figure 11 show the 
normalized waveform of the signals, and the source range 
recorded by the Global Position System (GPS) was 2.1 km, 
10.3 km, 62.2 km and 70.1 km. According to the waveforms, all 
signals in different range had high signal to noise ratio. 

Figure 12 shows the correlation coefficient between signals 
from different ranges. According to the results, the 
convergence zone has an obviously better spatial correlation 
than the shadow zone for the deep water situation. Besides, 
there is a strong correlation between the first convergence zone 
and the second convergence zone. 

 
Fig. 8 Normalized waveform of the signal emitted at 2.1 km range. 

 
Fig. 9 Normalized waveform of the signal emitted at 10.3 km range. 

 
Fig. 10 Normalized waveform of the signal emitted at 62.2 km range. 

 
Fig. 11 Normalized waveform of the signal emitted at 70.1 km range. 

 
Fig. 12 Correlation coefficient between the signals from different 

 
Fig. 1 Normalized waveform of the signal emitted at 10.1 km range 
recorded by the first hydrophone. 

 
Fig. 2 Normalized waveform of the signal emitted at 10.1 km range 
recorded by the second hydrophone. 

 
Fig. 3 Normalized waveform of the signal emitted at 100.1 km range 
by the first hydrophone. 

 
Fig. 4 Normalized waveform of the signal emitted at 100.2 km range 
by the second hydrophone. 

Figure 5 and figure 6 show the correlation coefficient 
between the signals from different ranges recorded by the first 
and second hydrophone. According to the results, the 
correlation coefficient between received explosive sound 
signals are relatively poor in shallow water, and the correlation 
radius is relatively small. 

 
Fig. 5 Correlation coefficient between the signals from different 
ranges recorded by the first hydrophone. 

 
Fig. 6 Correlation coefficient between the signals from different 
ranges recorded by the second hydrophone. 

Figure 7 shows the correlation coefficient of the signals 
recorded by the first and second hydrophone. According to 
figure 7, the correlation coefficient between two hydrophones 
is very good. 
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ranges. 
 

IV. SIMULATION 
 

Figure 13 shows the measured sound speed profile. There is a 
strong negative thermocline between the depths of 20 m and 
120 m, and the channel axis locates at the depth of 1000 m. 
Figure 14 shows the simulated two-dimensional acoustic 
transmission loss based on the ray simulation model, and there 
is a typical deep water sound field distribution with the 
structure of convergence zones and shadow zones. Figure 15 
shows the simulated acoustic transmission loss curve at the 
depth of 971.4 m, the first convergence zone locates at the 
range between 50 km and 70 km, and the second convergence 
zone locates at the range between 110 km and 130 km. The 
locations of convergence zones in figure 15 agree with the 
locations of high correlation in figure 12. According to the 
simulation, without the contact with the sea bottom, the signals 
in convergence zone retain high correlation. However, the 
signals’ correlation diminishes rapidly in shadow zone because 
of the contacts with the sea bottom. 

 
Fig. 13 Measured sound speed profile. 

 
Fig. 14 Simulated two-dimensional acoustic transmission loss. 

 
Fig. 15 Simulated acoustic transmission loss curve. 

 
V. CONCLUSION 

 
In this paper, experimental research shows that the 

correlation coefficient of sound field in shallow water and deep 
water. In the shallow water, the correlation coefficient between 
received explosive sound signals are relatively poor, and the 
correlation radius is relatively small. In the deep water, the 
convergence zone has an obviously better spatial correlation 
than the shadow zone, and there is a strong correlation among 
different convergence zones. Based on the comparison between 
the experiment and the simulation, the spatial correlation 
diminishes rapidly because of the contacts with the sea bottom, 
either at shallow water and deep water. 
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