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Abstract

In this paper, a novel paradigm to optimize the Taylor models
based worst-case analysis results of random circuits responses in
time domain has been proposed. The methodology leverages the
so-called Bernstein polynomials to yield a conservative, yet tight,
prediction of the worst case bounds. This proposed framework
has been used and verified in the time-domain analysis of an
exemplary linear circuit, which demonstrated its feasibility and
strength.
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Introduction

Circuits and system variability has long been impacting the
stability and reliability of electrical and electronic equipment,
and only in the last century or so have scientists and engineers
been able to investigate the responses of electronic devices

affected by unknown uncertainties via numerical techniques [1].

This pursuit was made possible through advancements in
computer techniques [2-3]. Among these numerical methods,
Taylor models (TM), as a sophisticated approach combining
the force of the traditional interval analysis (IA) method, offers
reasonable inherent worst case (WC) responses of circuits and
systems in a timely fashion [4-6]. In the TM operations, all
random parameters are represented in terms of truncated Taylor
expansions and an interval variable, while the interval variable
accounts for the truncation errors. The corresponding TM
operations abide both polynomial and IA rules. The final range
of the response is provided by both the polynomial and the IA-
remainder, hence it is indispensable to determine the exact

bound of this truncated polynomial, which is indeed non-trivial,

especially for high-order multivariate polynomials [6]. A rough
approximation of the polynomial bound will possibly lead to
unnecessarily strict margins, which are very unlikely to occur

[3].

In order to improve the TM based simulation results, one
idea is to adopt more sophisticated bound functions for the
polynomial part. Bernstein polynomials play an extremal
position in some classes of operations [7]. It is capable of
determining somehow tight bounds of a multivariate
polynomial over a closed box, and is therefore widely used for
global optimization [8] and numerical approximation [9]. The
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aim of this paper is to outline how Bernstein basis helps
improve the TM-based WC analysis of passive linear circuits
in time domain.

Taylor Models

The idea of the so called TM approach is to represent a
nonlinear function as Taylor polynomials combining an
interval remainder. For instance, given f of an interval variable
X =[a,b] (with the center of X beingx, =(a+b)/2), The TM

form of f(x) around x, should be

JX) =P, (x=x)+1, (M

where
L @

is the expanded polynomial part of f(x) around x,, and /,
being an interval value, which is commonly defined as the
Lagrange remainder of (2), the readers are suggested to see [4-
5] for detailed discussion on the calculation of IA-remainder.
Denote B(:) as the operator to calculate the bound of a

function, and the overall bound of the TM form function can be
represented as

B(f(x)=B(F,)+1, 3)

This overall bound is obtained from the IA-sum of two sub-
intervals, and it should enclose f(x) between two curves
for Vx €[a,b]. Ideally, /, =[0,0] implies that P (x) provides
an exact parametric representation of f(x), however in reality,

the TM form bound of (3) always provides over-estimated
results.

Given two TM form functions f(¥)=2F,(x)+/, and
gx)=F(x)+1,

operations between them, for instance, the product between
them yields

u(x)

, we can readily write the algebraic

J(¥) g(x) = (P, (x)+ 1, )(F,(x)+1,)

= P(0)P(x)+P (), + P, (), +1,1, @
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The first term in (4) can be further expressed as

B (x) F,(x) = F,(x)+ F,(x) ®)

where the order of F,(x) is equal to that of P,(x)and P,(x),

thus accounting for the polynomial part of the new TM form of
u(x) , whilst P,(x) accounts for the higher-order contribution.

In this sense, the new remainder of the product includes four
remaining terms and should be calculated as follows.

1,=B{)+B(P),+B({L), +1,1, 6)
It is worth noting that the use of Taylor models requires a
fast and accurate bound operator B(-) of the polynomials.

Since IA has been included in each step of the TM operations,
a rough bound of the polynomial part may lead to a large over-
estimation in a long chain of realistic operations. In the
univariate case, the bounds of a polynomial can be readily
obtained with analytical approaches, while in the multivariate
case it is non-trivial and requires suitable solutions. One
possible solution is introduced in the next part.

Multivariate Polynomial Bounds
As has been stated in the previous section, at the end of a
series of TM operations, we have obtained a TM form function,

the polynomial part of which is commonly represented by the
so called power basis

P(x)= Z[:aix[,

X' :Hxi‘[‘ 7
i=0 n=l
in x,,..., x, , of the degree / =(/,...,1,), as well as a box
X =[x, x]x--x[x,,x,] (®)

n n

This is only one of an infinite number of bases for the space
of polynomials. In order to obtain a tight outer bound for P(x)
over X , one method is to convert the power basis form
multivariate polynomial (7) into the Bernstein form, which
reads:

P() =Y b5,(x) ©)

where

B(x) —ij'ﬂ -0 (10)

form a basis, which constitutes the vector space of polynomials
with degree/, and
NV
/
J

b=Y>2a, 0<i<I

jo
= j

(1D

are the so-called Bernstein coefficients. It is relevant to point
out that the evaluation of b, in (11) is effective only for unit

box, namely X =[0,1]". For any arbitrary non-empty box, the
general form of Bernstein coefficients can be found in (12)

i
1
bi_/-om(x X) ;(]}i a,

J

(12)

Once we obtain the coefficients set b; of the Bernstein
expansion for a given polynomial, the range of the polynomial
over a particular box is determined simultaneously, which is
tightly bounded by these coefficients, as the property states: the
range of a polynomial P over a box X is contained between the
minimum value and the maximum value of the Bernstein
coefficients [6].

min, {h,} < P(x) <max,{b}, xeX (13)

Obviously, one has to compute all of the Bernstein
coefficients to determine the minimum and maximum, and this
can be extremely time-consuming in high-order operations
consisting of a relatively large number of variables. Smith
proposed a new approach to calculate the B-coefficients of
multivariate polynomials in [6], where he begins with
multivariate monomials. Consider the following polynomial
with only one term

gx)=a,x", x=(x,...x,),0<k<I

(14)

The Bernstein coefficients for monomial can be modified as

i
min{i,k}[ J ) k .
b=a, Y 4(F—x) ( .])_ck’
- /
do
J

On condition that a polynomial P is composed of m terms,
the overall Bernstein coefficients can be acquired from the sum
of all the coefficients of every single monomial. In this case,
the computational complexity is simply linear to the number of
total polynomials.

(15)

Numerical Results

In this section, we have collected the application results of
the proposed technique to the time domain simulation of the
passive circuits depicted in Fig. 1, where all component values
R, L, and C are defined by an interval value with given bounds.
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R

Fig. 1. An exemplary example of RLC circuit used to validate the proposed TM
method and Bernstein technique for worst-case analysis of random circuits in
time domain.




Recent Developments on Information and

Communication Technology (ICT) Engineering- Meen, Yang & Zhao

The nominal value of the parameters in Fig. 1 is R, =1Q,
L,=1H, and C, =1F. with all variables a £10% tolerance.
The circuit equation in form of matrix writes as follows:

Y, %w(t)+ng(t) =J (16)
where  w=[v,(£),v,(£),v,(£),i, (t),i,(t)] is the vector of
unknown variables, J=[0,0,0,0,e(¢)]" , and

G -G 0 0 1 00 00 O

-G G 0 0 00 0 0 O
Y,={0 0 0 -1 0f, ¥,={0 0 C 0 0
1 0 0 0 O 00 0 0 O

0 1 -1 0 00 0 0 -L

are the interval valued parameter matrices. To solve the
differential equation (16), we resort to the custom Trapezoidal

rule, namely, if Z—V: = f(t,w), then

W, I_Wn:

e [fw)+ w0 (7)

where h=¢ t, is the time step. The final time-domain

n+l n

analysis using sampled-data iterative map is performed as
(2Y, +hY, )W, =(2Y, = hY,)w, +h(a,, +a,) (18)

Unfortunately, a divergence is observed for the time-
domain responses, as can be seen in Fig. 2, due to the unlimited
growth of the [A-remainder.

If and only if, we use a higher-order Bernstein bound
method, the over-estimation is beat successfully, and the
optimized responses of capacitance voltage for the Fig. 1
circuit can be observed as shown in Fig. 3.
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Fig. 2. Error explosion due to the divergence of IA-remainder

Conclusion

In this work, we have illustrated a Taylor models algorithm
framework combing the strength of Bernstein polynomials to
jointly obtain the time-domain responses of a random circuit
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with bounded uncertain parameters. Simulated results
demonstrated both the accuracy and the feasibility of the
technique, and highlighted that the proposed framework allows
for achieving a substantial improvement compared with plain
TM calculations.
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Fig. 3. Time-domain solution of the capacitor voltage. The upper bound and
lower bound are obtained by TMs combining Bernstein bound solution
(magenta lines), and are compared with 10,000 Monte Carlo samples (gray
area).
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