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Abstract 

In this paper, a novel paradigm to optimize the Taylor models 
based worst-case analysis results of random circuits responses in 
time domain has been proposed. The methodology leverages the 
so-called Bernstein polynomials to yield a conservative, yet tight, 
prediction of the worst case bounds. This proposed framework 
has been used and verified in the time-domain analysis of an 
exemplary linear circuit, which demonstrated its feasibility and 
strength. 
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Introduction 
 

Circuits and system variability has long been impacting the 
stability and reliability of electrical and electronic equipment, 
and only in the last century or so have scientists and engineers 
been able to investigate the responses of electronic devices 
affected by unknown uncertainties via numerical techniques [1]. 
This pursuit was made possible through advancements in 
computer techniques [2-3]. Among these numerical methods, 
Taylor models (TM), as a sophisticated approach combining 
the force of the traditional interval analysis (IA) method, offers 
reasonable inherent worst case (WC) responses of circuits and 
systems in a timely fashion [4-6]. In the TM operations, all 
random parameters are represented in terms of truncated Taylor 
expansions and an interval variable, while the interval variable 
accounts for the truncation errors. The corresponding TM 
operations abide both polynomial and IA rules. The final range 
of the response is provided by both the polynomial and the IA-
remainder, hence it is indispensable to determine the exact 
bound of this truncated polynomial, which is indeed non-trivial, 
especially for high-order multivariate polynomials [6]. A rough 
approximation of the polynomial bound will possibly lead to 
unnecessarily strict margins, which are very unlikely to occur 
[3]. 

In order to improve the TM based simulation results, one 
idea is to adopt more sophisticated bound functions for the 
polynomial part. Bernstein polynomials play an extremal 
position in some classes of operations [7]. It is capable of 
determining somehow tight bounds of a multivariate 
polynomial over a closed box, and is therefore widely used for 
global optimization [8] and numerical approximation [9]. The 

aim of this paper is to outline how Bernstein basis helps 
improve the TM-based WC analysis of passive linear circuits 
in time domain. 

 

Taylor Models 
 

The idea of the so called TM approach is to represent a 
nonlinear function as Taylor polynomials combining an 
interval remainder. For instance, given f of an interval variable 

[ , ]x a b (with the center of x  being 0 ( ) / 2x a b  ), The TM 
form of ( )f x  around 0x  should be 
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is the expanded polynomial part of ( )f x  around 0x , and fI  
being an interval value, which is commonly defined as the 
Lagrange remainder of (2), the readers are suggested to see [4-
5] for detailed discussion on the calculation of IA-remainder. 

Denote ( )B   as the operator to calculate the bound of a 
function, and the overall bound of the TM form function can be 
represented as 

( ( )) ( )f fB f x B P I                            (3) 

This overall bound is obtained from the IA-sum of two sub-
intervals, and it should enclose ( )f x  between two curves 
for [ , ]x a b  . Ideally, [0,0]fI  implies that ( )fP x  provides 
an exact parametric representation of ( )f x , however in reality, 
the TM form bound of (3) always provides over-estimated 
results. 

Given two TM form functions ( ) ( )f ff x P x I   and 
( ) ( )g gg x P x I  , we can readily write the algebraic 

operations between them, for instance, the product between 
them yields 

( ) ( ) ( ) ( ( ) )( ( ) )
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explains the greatest demonstration in illustrating variable. 
Before the third latent root, the value is much more, which 
gives little explanation on variable. Hence, it is right to extract 
three factors; and from the table of explained variance, the 
number of latent root which is more than 1 is 3. So, there is 
important to choose 3 factors respectively: factor 2 is customer 
price fairness measure factor (PFP), factor 3 is customer price 
variety perception factor (PVP). 

According to correlation coefficient matrix, adopts 
principal component analysis extracting factors and accepts the 
value of latent root which is more than 1. 

That is the problem-solving method, which explains that the 
common degree data of all the variables. Most of the data 
(≥80%) in each variable is illustrated by factors; in general, the 
data of variable is relevant less. Therefore, the utility of this 
factor extracting is satisfactory. 

Data analyzes by SPSS 24.0, and chooses regression in 
estimate factor score coefficient, and illustrates them in the 
factor score coefficient analysis table. 

TABLE Ⅴ  
FACTOR SCORE COEFFICIENT ANALYSIS 

 

 
Factor 

1(PCP) 2(PFP) 3(PVP) 
Price cheapness 

evaluation 1(PCE1) 
0.338 -0.002 0.001 

Price cheapness 
evaluation 2(PCE2) 

0.338 0.004 0.006 
Price cheapness 

evaluation 3(PCE3) 
0.338 0.003 0.009 

Price fairness evaluation 
1(PFE1) 

0.005 0.341 -0.003 
Price fairness evaluation 

2(PFE2) 
0.001 0.339 -0.007 

Price fairness evaluation 
3(PFE3) 

-0.001 0.339 0.000 
Price variety evaluation 

1(PVE1) 
0.011 -0.006 0.353 

Price variety evaluation 
2(PVE2) 

0.004 -0.004 0.358 
Price variety evaluation 

3(PVE3) 
0.002 0.000 0.353 

 

According to the above table can get factor score function: 
PCP=0.338PCE1+0.338PCE2+0.338PCE3+0.005PFE1+0.001PFE2-0.001PFE3+0.011+0.004PVE2+0.002PVE3                             (1) 
PFP=-0.002PCE1+0.004PCE2+0.003PCE3+0.341PFE1+0.339PFE2+0.339PFE3-0.006PVE1-0.004PVE2                                               (2) 
PVP=0.001PCE1+0.006PCE2+0.009PCE3-0.003PFE1-0.007PFE2+0.353PVE1+0.358PVE2+0.353PVE3                                               (3) 

 

When calculates the value of three factor score variable, 
price cheapness, price fairness and price variety has higher 
weight in each independent factor, and has lower weight in the 
other factor, which is correspondent in reality. The feature of 
three factor score equation manifests that rice cheapness, price 
fairness and price variety have positive influence on consumer 
price overall perception. Hence, these hypotheses come true: 

H1: Price cheapness directly impacts consumer price 
overall perception. 

H2: Price cheapness direct positively influences consumer 
price overall perception. 

H3: Price fairness directly impacts consumer price overall 
perception. 

H4: Price fairness direct positively impacts consumer price 
overall perception. 

H5: Price variety directly impacts consumer price overall 
perception. 

H6: Price variety direct positively impacts consumer price 
overall perception. 

 
Conclusions 

 
This paper builds dialectic relation among consumer price 

overall perception character that is made up cheapness, fairness 
and variety based on consumer surplus theory, prospect theory 
and mental accounting theory. Consumer purchasing decision 
is not only determined by price cheapness, but is also 
moderated by price fairness and price variety in the perception 
of transaction. This paper unveils the impact of price character 

towards consumer price overall perception and gives the 
theoretical direction to marketing management. 
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The first term in (4) can be further expressed as 

( ) ( ) ( ) ( )f g u eP x P x P x P x                        (5) 

where the order of ( )uP x  is equal to that of ( )fP x and ( )gP x , 
thus accounting for the polynomial part of the new TM form of 

( )u x , whilst ( )eP x  accounts for the higher-order contribution. 
In this sense, the new remainder of the product includes four 
remaining terms and should be calculated as follows. 

( ) ( ) ( )u e f g g f f gI B P B P I B P I I I                   (6) 

It is worth noting that the use of Taylor models requires a 
fast and accurate bound operator ( )B   of the polynomials. 
Since IA has been included in each step of the TM operations, 
a rough bound of the polynomial part may lead to a large over-
estimation in a long chain of realistic operations. In the 
univariate case, the bounds of a polynomial can be readily 
obtained with analytical approaches, while in the multivariate 
case it is non-trivial and requires suitable solutions. One 
possible solution is introduced in the next part. 

 

Multivariate Polynomial Bounds 
 

As has been stated in the previous section, at the end of a 
series of TM operations, we have obtained a TM form function, 
the polynomial part of which is commonly represented by the 
so called power basis 
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in 1, ..., nx x , of the degree 1( ,..., )nl l l , as well as a box 

1 1[ , ] [ , ]n nX x x x x                               (8) 

This is only one of an infinite number of bases for the space 
of polynomials. In order to obtain a tight outer bound for ( )P x  
over X , one method is to convert the power basis form 
multivariate polynomial (7) into the Bernstein form, which 
reads: 
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form a basis, which constitutes the vector space of polynomials 
with degree l , and 
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are the so-called Bernstein coefficients. It is relevant to point 
out that the evaluation of ib  in (11) is effective only for unit 
box, namely [0,1]nX  . For any arbitrary non-empty box, the 
general form of Bernstein coefficients can be found in (12) 
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Once we obtain the coefficients set bi of the Bernstein 
expansion for a given polynomial, the range of the polynomial 
over a particular box is determined simultaneously, which is 
tightly bounded by these coefficients, as the property states: the 
range of a polynomial P over a box X is contained between the 
minimum value and the maximum value of the Bernstein 
coefficients [6]. 

min { } ( ) max { },i i i ib P x b x X                  (13) 

Obviously, one has to compute all of the Bernstein 
coefficients to determine the minimum and maximum, and this 
can be extremely time-consuming in high-order operations 
consisting of a relatively large number of variables. Smith 
proposed a new approach to calculate the B-coefficients of 
multivariate polynomials in [6], where he begins with 
multivariate monomials. Consider the following polynomial 
with only one term 

1( ) , ( ,..., ), 0k
k nq x a x x x x k l                  (14) 

The Bernstein coefficients for monomial can be modified as 

min{ , }
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On condition that a polynomial P is composed of m terms, 
the overall Bernstein coefficients can be acquired from the sum 
of all the coefficients of every single monomial. In this case, 
the computational complexity is simply linear to the number of 
total polynomials. 

 

Numerical Results 
 

In this section, we have collected the application results of 
the proposed technique to the time domain simulation of the 
passive circuits depicted in Fig. 1, where all component values 
R, L, and C are defined by an interval value with given bounds. 

 
Fig. 1. An exemplary example of RLC circuit used to validate the proposed TM 
method and Bernstein technique for worst-case analysis of random circuits in 
time domain. 
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The nominal value of the parameters in Fig. 1 is 0 1R   , 

0 1HL  , and 0 1C  F. with all variables a 10%  tolerance. 
The circuit equation in form of matrix writes as follows: 

( ) ( )d t t
dt

 d gY w Y w J                         (16) 

where 1 2 3[ ( ), ( ), ( ), ( ), ( )]T
L ev t v t v t i t i tw  is the vector of 

unknown variables,  [0,0,0,0, ( )]Te tJ , and 

0 0 1
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0 0 0 1 0
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0 1 1 0 0

G G
G G
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dY  

are the interval valued parameter matrices. To solve the 
differential equation (16), we resort to the custom Trapezoidal 

rule, namely, if ( , )dw f t w
dt

 , then 

 1
1

1 ( , ) ( , )
2

n n
n n n n

w w
f t w f t w

h





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where 1n nh t t   is the time step. The final time-domain 
analysis using sampled-data iterative map is performed as 

     1 12 2n n n nh h h     d g d gY Y w Y Y w a a     (18) 

Unfortunately, a divergence is observed for the time-
domain responses, as can be seen in Fig. 2, due to the unlimited 
growth of the IA-remainder. 

If and only if, we use a higher-order Bernstein bound 
method, the over-estimation is beat successfully, and the 
optimized responses of capacitance voltage for the Fig. 1 
circuit can be observed as shown in Fig. 3. 

 
Fig. 2. Error explosion due to the divergence of IA-remainder 

 
Conclusion 

 
In this work, we have illustrated a Taylor models algorithm 

framework combing the strength of Bernstein polynomials to 
jointly obtain the time-domain responses of a random circuit 

with bounded uncertain parameters. Simulated results 
demonstrated both the accuracy and the feasibility of the 
technique, and highlighted that the proposed framework allows 
for achieving a substantial improvement compared with plain 
TM calculations. 

 
Fig. 3. Time-domain solution of the capacitor voltage. The upper bound and 
lower bound are obtained by TMs combining Bernstein bound solution 
(magenta lines), and are compared with 10,000 Monte Carlo samples (gray 
area). 
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