
333

Educational Innovations and Applications- Tijus, Meen, Chang
ISBN: 978-981-14-2064-1

A genetic algorithm for target coverage problem in directional sensor networks 
 

Yu-Shu Lo1,a, Chiu-Kuo Liang1,b 
 

1Department of the Computer Science and Information Engineering, Chung Hua University,  
707 Sec. 2, WuFu Rd., Hsinchu, 300 Taiwan, R.O.C. 

ae10202025@chu.edu.tw, bckliang@chu.edu.tw 
 

Abstract 
 

Unlike traditional sensors with full-angle sensing range, 
directional sensors can only  monitor for limited sensing ranges 
and angles due to technical limitations or cost considerations. 
The directional sensor network is composed of a number of 
directional sensor nodes. Therefore, it is possible that when 
directional sensors are randomly deployed in the field, some 
interested targets cannot be sensed even if these targets are 
located within the sensing range of the directional sensors. we 
study the target coverage problem in directional sensor 
networks with rotatable sensors. A rotatable sensor in a 
directional sensor network is a sensor whose sensing orientaion 
can be rotated to any particular direction. The target coverage 
problem is to achieve the higher coverage rate by rotating the 
sensor orentation while minimizing the active sensors after 
deployment. In this paper, we first present a greedy algorithm 
to solve the target coverage problem by scheduling each sensor 
to appropriate direction. This greedy scheme is used as a 
baseline for the performance comparison. We then propose a 
genetic algorithm-based target coverage scheme that can find 
the better coverage rate while minimizing the active sensors to 
prolong the network lifetime by evolutionary global search 
technique. Simulation results showed that the genetic 
algorithm-based scheme outperforms than the greedy algorithm 
in terms of maxmizing the coverage rate and minimizing the 
active sensors. 
 
Key words: Directional sensor networks, target coverage 
problem, genetic algorithms 

  
Introduction 

     
Due to the improvement of technology in the past years, the 

wireless sensor networks (WSN) has been widely used in the 
sustainable development and application on monitoring and 
tracking [1-5]. The sensing coverage problem is a fundamental 
problem and is usually related to the efficiency of sensors in 
performing sensing tasks in the deployed space in applications. 
Therefore, the sensing coverage problem has been studied by 
many researchers. Most of the past works are based on the 
sensors which have omni-directional (360°) effective sensing 
range. In many real applications, sensors are limited to some 
directions and specific sensing angle, such as infrared sensors 
[5], video sensors [6], and ultrasonic sensors [7]. Such sensors 
are called the directional sensors. As a result, research results 
on omni-directional sensor networks could not be applied 
directly in directional sensor networks (DSN) which is 
composed of many directional sensors. Therefore, there still 
has many challenge problems in DSN. 

One of the challenge problems in DSN is the target coverage 

problem. In target coverage problem, the aim is to cover a set of 
interested targets within the sensing field. Therefore, a 
directional sensor can rotate its sensing direction to any 
direction for covering the targets. However, the deployed 
sensors are powered by battery and can only be activated for a 
limited period of time. This means that energy consumption is 
very crucial for prolonging the network lifespan in DSN. 
Therefore, the target coverage problem is to maximize the 
number of covered targets while minimizing the number of 
working sensors in order to maximize the network lifetime.  

In this paper, we proposed a genetic based algorithm for the 
target coverage problem in DSN. There are two objectives for 
the target coverage problem: maximizing the number of 
covered targets and minimizing the number of working sensors. 
These objectives can be achieved using a genetic algorithm 
(GA) that runs reasonable crossover and mutation operations to 
ensure compliance with the topology of actual sensor networks 
and the demand for the sensing direction rotation among nodes, 
in order to solve the target coverage problem. 

The remainder of this paper is organized as follows: Section 
2 introduces previous works related to the coverage problem in 
DSN. In Section 3, we formally define the target coverage 
problem with rotatable directional sensor. In Section 4, our 
proposed genetic algorithm-based scheme is presented. Section 
5 presents some simulation results and evaluates the 
performance of proposed algorithms. Section 6 presents 
conclusions and briefly describes our future work. 

 
Related Work 

 
Target coverage in omni-directional sensor networks is an 

important issue that have been widely discussed. When a group 
of targets are scattered across a network, the authors in [8] 
assumed that each sensor can only cover one target at a time, 
and established a coverage timetable for maximizing the 
network lifetime. The authors in [9-10] proposed methods to 
organize all sensors into different groups and then allowing 
these groups to be successively activated to extend the network 
lifetime. 

In recent years, the coverage problem in DSN has attracted 
the attention of many researchers. Ai and Abouzeid [11] 
proposed a model of sensor network with orientation adjustable 
sensor node. They define the Maximum Coverage with 
Minimum Sensors (MCMS) problem with the goal of 
maximizing the coverage rate while minimizing the number of 
active sensors. They also presented the Centralized Greedy 
Algorithm (CGA) and Distributed Greedy Algorithm (DGA) 
for the MCMS problem. Cai et al. [12] defined the Directional 
Cover Set problem (DCS) of finding a cover set of targets and 
proved that the DCS problem is NP-Complete. Liang and Chen 
[13] defined Maximum Coverage with Rotatable Angles 
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Indv : (1, 2, 1, 3, 0, 4, 1, 0, 3)

mutation point

change sensing direction
Indv : (1, 2, 1, 3, 0, 2, 1, 0, 3)

 
C. Selection 

The purpose of selection process is to choose the candidate 
individuals based on their fitness from the population in the 
current generation. In our proposed genetic algorithm, we use 
the roulette wheel method to implement the selection process. 
By using a biased roulette wheel, we assign a slot to each 
individual, and the slot size is proportional to the individual's 
fitness value. As a result, individuals with higher fitness values 
will be more likely to be selected as individuals of population in 
the next generation. 

 
D. Fitness Evaluation 

The selection process chooses the candidate individuals 
based on their fitness from the population in the current 
generation. In our proposed genetic algorithm, we use the 
roulette wheel method to implement the selection process. By 
using a biased roulette wheel, we assign a slot to each 
individual, and the slot size is proportional to the individual's 
fitness value. As a result, individuals with higher fitness values 
will be more likely to be selected as individuals of population in 
the next generation. 

There are two main factors needed to be optimized in our 
genetic algorithm, namely the total target coverage rate and the 
farthest moving distance among all sensors. Therefore, we 
define the following equation which consists of two 
components to evaluate the fitness of each individual: 

n
knwRwF −

×−+×= )1(  

where R is the target coverage rate, k is the number of active 
sensors, and w is a predefined weight, 0 ≤ w ≤ 1. The target 
coverage rate is the percentage of targets covered by sensors in 
network. The proposed genetic algorithm aims to maximize the 
fitness value for finding a good solution. 

 
Simulation Results 

 
To evaluate the performance, we implemented the proposed 

genetic algorithm compared to the result obtained by the greedy 
solution proposed by [14] and also conducted a set of 
simulation experiments. All experiments were performed by a 
program in C# on .NET platform. We repeatedly performed 
each experiment 20 times, and averaged the recorded data into 
final results. We assume that the size of interested area is a 
100m × 100m rectangular area and the sensing range of each 
sensor is 10m with the angle of field of view 60°. Table 1 shows 
the parameter settings in our simulations. 

Fig. 3 shows the impact of the number of sensors to the target 
coverage of our proposed genetic algorithm when w = 1.0, and 
Ic = 100. The range of the number of sensors is from 50 to 200 
with each increase of 25 sensors. In this experiment, we only 
focus on the objective function of maximizing the target 
coverage rate of all sensors. 

 

 
In Fig. 3, we can see that our proposed genetic algorithm can 

obtain the better coverage rate than the previously proposed 
greedy algorithm. 

 

Fig. 3. Fitness of GA when w = 1.0 and Ic = 100. 

Fig. 4 shows the evaluation process of our genetic algorithm. 
In Fig. 4, the progress of average fitness value for 20 runs is 
plotted when w = 1.0, and Ic = 200. In this case, the fitness 
value indicates the target coverage rate. Furthermore, a black 
line represents the average fitness when 50 sensors are 
deployed for covering 200 targets. The red line represents the 
average fitness when 100 sensors are deployed. From Fig. 4, it 
can be seen that two fitness curves grow higher as the 
generation increases. As a result, our proposed genetic 
algorithm can sufficiently find the global optimal solution for 
the target coverage problem.  

 

Fig. 4. Evolition process of average fitness for 20 runs of our genetic 
algorithm. 

TABLE I 
PARAMETER SETTING IN SIMULATIONS 

        
Parameter Value Meaning 

n 200 Number of targets 
m 50, 75, ..., 200 Number of sensors 
P 100 Population size 
pc 0.8 Probability of crossover 
pm 0.01 Probability of mutation 
w 0.5, 1 Weight of fitness function 
Ic 100 Iteration count 

(MCRA) problem for directional sensors with rotatable angles 
in which the number of targets to be covered is maximized 
while the angles to be rotated is minimized. They presented two 
centralized greedy algorithms, namely the Maximal Rotatable 
Angles (MRA) scheme and the Maximum Coverage First 
(MCF) scheme, to rotate the working direction of sensors for 
the MCRA problem. Both of their proposed greedy methods 
are based on the weights of working direction of sensors. 
Accordingly, the sensors could rotate their working directions 
to cover more targets. In [14], the authors presented a greedy 
method based on constructing the sensing directions according 
to the targets within the sensors to improve the coverage rate 
obtained by [13]. In this paper, we construct a genetic 
algorithm to improve the result of greedy algorithm to achieve 
better target coverage rate. 

 
Rotatable Sensors for Target Coverage Problem 

 
In this section, the sensing model of the rotatable sensors in 

DSN and the definition of the target coverage problem with 
rotatable sensors are described as follows. 
 
A. Sensing Model 

The sensing model of a directional sensor s can be described 
as follows and shown as in Fig. 1: Suppose that a sensor s is 
located in the plane with location (x, y). Let r denote its sensing 
radius, D be the orientation indicating the sensing direction of 
sensor s, and α denote the offset angle of the field of view on 
both side of D. The field of view of sensor s is enclosed by two 
radii between D-α and D+α. In addition, a target t can be 
covered by a sensor s if its location is within the sector area of 
sensor s. 
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Fig. 1. The directional sensing model of rotatable sensors. 

B. Problem Definition 
It should be noticed that a target in DSN cannot be covered 

by a sensor even if the target is located within the sensing radius 
of the sensor. For covering the target, the sensor needs to rotate 
its sensing direction. Such situation can be illustrated in the 
example shown in Fig. 2. In Fig. 2(a), there are 3 targets, 
namely t1, t2 and t3, located within the sensing range of 
deployed sensor s with sensing orientation D. It can be seen that 
targets t1 and t2 are covered by the sensor. However, target t3 
can also be covered if sensor s rotates its sensing orientation 
clockwise to D'.    

In this paper, our aim is to find the appropriate sensing 
direction of each sensor so that the number of targets can be 
covered is maximized. Meanwhile, for the sake of energy 
saving, the number of activated sensor is minimized. Therefore, 
our goal is to maximize the target coverage rate while 
minimizing the total number of active sensors. 
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Fig. 2. An example for a directional sensor to cover more targets by rotating 
its sensing direction. 

Proposed Genetic Algorithm 
 

We develop a genetic algorithm to find the optimal or 
near-optimal solutions for the aforementioned target coverage 
problem in DSN. Following sections describe the fundamental 
parts of our proposed genetic algorithm. 

 
A. Problem Representation 

Finding appropriate working direction for each sensor is 
critically important to maximizing the target coverage. Given a 
set of m targets T = {t1, t2, …, tm}, a set of directional sensor 
nodes S =  {s1, s2, …, sn}, and each sensor si has pi possible 
sensing directions, then a possible sensor sensing direction 
arrangement or chromosome can be represented as follows: 

 
  (d1, d2, ..., dn)  

where di represents the sensing direction sensor si, and 0 ≤ di ≤ 
pi. In this representation, when di = 0, it means that sensor si is 
inactive to conserve energy.  

B. GA Operators 
In genetic algorithms, the selection process is intended to 

provide and improve the quality of population, while crossover 
and mutation provide the ability to generate new population. 
Therefore, the effectiveness of a genetic algorithm depends not 
only the ability of improving the quality of population but also 
the ability of generating new population.  

• Crossover: The crossover operation will first select 
two individuals and then produce two new individuals 
by exchanging parts of their chromogene according to 
probability specified by the crossover rate. In this 
paper, we use two-point crossover. This means that two 
selected individuals exchange portions between the 
boundaries a segment indicated by two points. 
Following shows an example of crossover operation: 

  Indv1 : (1, 2, 1, 3, 0, 2, 3, 2, 2) 

  Indv2 : (0, 2, 1, 2, 2, 1, 3, 2, 1) 

After crossover on the second segment, two offspring 
are created as below: 

  Child1 : (1, 2, 1, 2, 2, 1, 3, 2, 2) 

  Child2 : (0, 2, 1, 3, 0, 2, 3, 2, 1) 

• Mutation: In an individual, the mutation operator is 
applied to each sensor with a probability specified by 
the mutation rate. When applied, we randomly choose 
one sensor to change its sensing direction. The 
following shows an example of mutation: 



335

Educational Innovations and Applications- Tijus, Meen, Chang
ISBN: 978-981-14-2064-1

Indv : (1, 2, 1, 3, 0, 4, 1, 0, 3)

mutation point

change sensing direction
Indv : (1, 2, 1, 3, 0, 2, 1, 0, 3)

 
C. Selection 

The purpose of selection process is to choose the candidate 
individuals based on their fitness from the population in the 
current generation. In our proposed genetic algorithm, we use 
the roulette wheel method to implement the selection process. 
By using a biased roulette wheel, we assign a slot to each 
individual, and the slot size is proportional to the individual's 
fitness value. As a result, individuals with higher fitness values 
will be more likely to be selected as individuals of population in 
the next generation. 

 
D. Fitness Evaluation 

The selection process chooses the candidate individuals 
based on their fitness from the population in the current 
generation. In our proposed genetic algorithm, we use the 
roulette wheel method to implement the selection process. By 
using a biased roulette wheel, we assign a slot to each 
individual, and the slot size is proportional to the individual's 
fitness value. As a result, individuals with higher fitness values 
will be more likely to be selected as individuals of population in 
the next generation. 

There are two main factors needed to be optimized in our 
genetic algorithm, namely the total target coverage rate and the 
farthest moving distance among all sensors. Therefore, we 
define the following equation which consists of two 
components to evaluate the fitness of each individual: 

n
knwRwF −

×−+×= )1(  

where R is the target coverage rate, k is the number of active 
sensors, and w is a predefined weight, 0 ≤ w ≤ 1. The target 
coverage rate is the percentage of targets covered by sensors in 
network. The proposed genetic algorithm aims to maximize the 
fitness value for finding a good solution. 

 
Simulation Results 

 
To evaluate the performance, we implemented the proposed 

genetic algorithm compared to the result obtained by the greedy 
solution proposed by [14] and also conducted a set of 
simulation experiments. All experiments were performed by a 
program in C# on .NET platform. We repeatedly performed 
each experiment 20 times, and averaged the recorded data into 
final results. We assume that the size of interested area is a 
100m × 100m rectangular area and the sensing range of each 
sensor is 10m with the angle of field of view 60°. Table 1 shows 
the parameter settings in our simulations. 

Fig. 3 shows the impact of the number of sensors to the target 
coverage of our proposed genetic algorithm when w = 1.0, and 
Ic = 100. The range of the number of sensors is from 50 to 200 
with each increase of 25 sensors. In this experiment, we only 
focus on the objective function of maximizing the target 
coverage rate of all sensors. 

 

 
In Fig. 3, we can see that our proposed genetic algorithm can 

obtain the better coverage rate than the previously proposed 
greedy algorithm. 

 

Fig. 3. Fitness of GA when w = 1.0 and Ic = 100. 

Fig. 4 shows the evaluation process of our genetic algorithm. 
In Fig. 4, the progress of average fitness value for 20 runs is 
plotted when w = 1.0, and Ic = 200. In this case, the fitness 
value indicates the target coverage rate. Furthermore, a black 
line represents the average fitness when 50 sensors are 
deployed for covering 200 targets. The red line represents the 
average fitness when 100 sensors are deployed. From Fig. 4, it 
can be seen that two fitness curves grow higher as the 
generation increases. As a result, our proposed genetic 
algorithm can sufficiently find the global optimal solution for 
the target coverage problem.  

 

Fig. 4. Evolition process of average fitness for 20 runs of our genetic 
algorithm. 

TABLE I 
PARAMETER SETTING IN SIMULATIONS 

        
Parameter Value Meaning 

n 200 Number of targets 
m 50, 75, ..., 200 Number of sensors 
P 100 Population size 
pc 0.8 Probability of crossover 
pm 0.01 Probability of mutation 
w 0.5, 1 Weight of fitness function 
Ic 100 Iteration count 

(MCRA) problem for directional sensors with rotatable angles 
in which the number of targets to be covered is maximized 
while the angles to be rotated is minimized. They presented two 
centralized greedy algorithms, namely the Maximal Rotatable 
Angles (MRA) scheme and the Maximum Coverage First 
(MCF) scheme, to rotate the working direction of sensors for 
the MCRA problem. Both of their proposed greedy methods 
are based on the weights of working direction of sensors. 
Accordingly, the sensors could rotate their working directions 
to cover more targets. In [14], the authors presented a greedy 
method based on constructing the sensing directions according 
to the targets within the sensors to improve the coverage rate 
obtained by [13]. In this paper, we construct a genetic 
algorithm to improve the result of greedy algorithm to achieve 
better target coverage rate. 

 
Rotatable Sensors for Target Coverage Problem 

 
In this section, the sensing model of the rotatable sensors in 

DSN and the definition of the target coverage problem with 
rotatable sensors are described as follows. 
 
A. Sensing Model 

The sensing model of a directional sensor s can be described 
as follows and shown as in Fig. 1: Suppose that a sensor s is 
located in the plane with location (x, y). Let r denote its sensing 
radius, D be the orientation indicating the sensing direction of 
sensor s, and α denote the offset angle of the field of view on 
both side of D. The field of view of sensor s is enclosed by two 
radii between D-α and D+α. In addition, a target t can be 
covered by a sensor s if its location is within the sector area of 
sensor s. 
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Fig. 1. The directional sensing model of rotatable sensors. 

B. Problem Definition 
It should be noticed that a target in DSN cannot be covered 

by a sensor even if the target is located within the sensing radius 
of the sensor. For covering the target, the sensor needs to rotate 
its sensing direction. Such situation can be illustrated in the 
example shown in Fig. 2. In Fig. 2(a), there are 3 targets, 
namely t1, t2 and t3, located within the sensing range of 
deployed sensor s with sensing orientation D. It can be seen that 
targets t1 and t2 are covered by the sensor. However, target t3 
can also be covered if sensor s rotates its sensing orientation 
clockwise to D'.    

In this paper, our aim is to find the appropriate sensing 
direction of each sensor so that the number of targets can be 
covered is maximized. Meanwhile, for the sake of energy 
saving, the number of activated sensor is minimized. Therefore, 
our goal is to maximize the target coverage rate while 
minimizing the total number of active sensors. 
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Fig. 2. An example for a directional sensor to cover more targets by rotating 
its sensing direction. 

Proposed Genetic Algorithm 
 

We develop a genetic algorithm to find the optimal or 
near-optimal solutions for the aforementioned target coverage 
problem in DSN. Following sections describe the fundamental 
parts of our proposed genetic algorithm. 

 
A. Problem Representation 

Finding appropriate working direction for each sensor is 
critically important to maximizing the target coverage. Given a 
set of m targets T = {t1, t2, …, tm}, a set of directional sensor 
nodes S =  {s1, s2, …, sn}, and each sensor si has pi possible 
sensing directions, then a possible sensor sensing direction 
arrangement or chromosome can be represented as follows: 

 
  (d1, d2, ..., dn)  

where di represents the sensing direction sensor si, and 0 ≤ di ≤ 
pi. In this representation, when di = 0, it means that sensor si is 
inactive to conserve energy.  

B. GA Operators 
In genetic algorithms, the selection process is intended to 

provide and improve the quality of population, while crossover 
and mutation provide the ability to generate new population. 
Therefore, the effectiveness of a genetic algorithm depends not 
only the ability of improving the quality of population but also 
the ability of generating new population.  

• Crossover: The crossover operation will first select 
two individuals and then produce two new individuals 
by exchanging parts of their chromogene according to 
probability specified by the crossover rate. In this 
paper, we use two-point crossover. This means that two 
selected individuals exchange portions between the 
boundaries a segment indicated by two points. 
Following shows an example of crossover operation: 

  Indv1 : (1, 2, 1, 3, 0, 2, 3, 2, 2) 

  Indv2 : (0, 2, 1, 2, 2, 1, 3, 2, 1) 

After crossover on the second segment, two offspring 
are created as below: 

  Child1 : (1, 2, 1, 2, 2, 1, 3, 2, 2) 

  Child2 : (0, 2, 1, 3, 0, 2, 3, 2, 1) 

• Mutation: In an individual, the mutation operator is 
applied to each sensor with a probability specified by 
the mutation rate. When applied, we randomly choose 
one sensor to change its sensing direction. The 
following shows an example of mutation: 
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Abstract 

 
Young Children Emotional Competency Scale (YCECS) 

[1] is a standardized tool assessed by teachers. Is it possible to 
directly measure emotional competency of 4- to 6-year old? Is 
database of frequently used emotional vocabulary (DFUEV) 
significantly correlated with YCECS? How reliable and valid 
are DFUEV? Instruments comprise developing 40 emotional 
theaters and 5 rating scoring standards. Procedures include 
selecting 200 4- to 6-year-old and conducting experiments. 
Findings indicate inter-rater reliability of 96.9% and 
criterion-related validity reaching significant. 
 
 Key words: database, emotional competency, young children  

  
Introduction 

     
 In the era of big data challenges, using big data to analyze 

the past and predict the future is a trend in the study early 
childhood development. At present, the evaluation of children's 
emotional ability is mostly understood through long-term 
observation by teachers. Many studies have indirectly assessed 
the emotional scores of young children using a rating scale. 
Other studies have directly evaluated emotional ability based 
on expressions, voices, and words [2]. In order to solve these 
two problems, the purpose of this study is to explore scores 
directly by using artificial intelligence to detect children's 
emotional ability (DEVYC) and indirectly by using the YCECS. 
Explore the relationship between DEVYC and YCECS. 

A relate study used emotional pictures for expression 
recognition and found that widely used facial emotion pictures 
(PoFA; i.e. "Ekman face") and the Radboud Faces database 
(RaFD) are generally not considered to show real emotions [3].  

Therefore, this study used actual shooting of children's films 
for facial emotion recognition. Expression recognition of 55% 
of the emotional score is calculated as follows: We use 
expression recognition technology to analyze 200 children’s 
responses to each question for expressions of seven emotions, 
including angry, despised, disgusted, happy, not opinion, sad 
and surprised. We then calculate the number of times each 
emotion is identified. According to the database, the score is 
converted into five levels multiplied by the number of 
occurrences, and finally added to the numerator. The sum of the 
occurrences of the seven emotions is the denominator, and the 
weight distribution of each emotion in each question is 
calculated. According to the five levels of the database, if the 
percentage reaches 80%~100%, 5 points are given. We use 
Microsoft's Project Oxford tool to establish expression 
recognition as the sub-criteria [4]. 

Previous studies have found it is impossible to achieve 
satisfactory results by recognizing emotions based on speech or 
facial expressions [5] [6]. Therefore, this study first established 
a common emotional vocabulary database (DEVYC) for 
children and developed emotional theatre experiments. Young 
children identified facial expressions while enjoying the 
experiments and produced facial expressions (55% = A). 
Second, the teachers presenting the emotional theatre asked the 
children questions and elicited responses. The scores were 
compared to DEVYC according the phonetic text of the 
children’s answers, producing a speech recognition sentiment 
score (38% = B). Finally, we asked the children to draw the 
parts they liked, verbally interpret the speeches and then 
convert them to text. The scores were then compared to 
DEVYC to produce a character recognition sentiment score 
(7% = C). The emotional scores obtained by young children (A 
+ B + C) are related to the standardized test, YCECS (standard), 
developed by the investigator. 

Related study used a set of expressions consisting of four 
expressions (happy, angry, sad, neutral) [7]. These expressions 
were then entered into three different deep neural network 
models, Restricted Boltzmann Machine, Deep Belief Networks, 
and Stacked Autoencoder with Softmax Function, for 
comparison. The final comparison shows that the two layers of 
the Restricted Boltzmann Machine and Deep Belief Networks 
training models have more than 100 layers, but the accuracy is 
only 25%. Stacked Autoencoder with Softmax Function has 
96% accuracy rate and can capture features well, but the time 
needed to identify emotions is greatly increased because there 
are too many parameters. 

Most existing emotion recognition techniques rely on the 
CNN training model. Karen et al. proposed a VGG16 
architecture based on the CNN network [8]. VGG16 
emphasizes the importance of depth in CNN networks. 
Compared to CNN, each convolutional layer filter is 
compressed to 3*3, replacing the larger filter commonly used in 
CNN. The efficiency of the convolution operation is improved, 
but the parameters in the fully connected layer of the last layer 
still account for 90% of the overall network. Therefore, 
Christian et al. proposed the Inception V3 architecture, which 
uses Global Average Pooling technology [9]. Averaging the 
data of the pooling layer can solve both the problem of having 
too many parameters and features captured by the layer. 

Today's CNN-based emotion recognition technology has 
solved the problem of having many parameters. However, if 
there are too many filters on the convolution operation layer, 
the time required for the convolution operation on the 
convolution operation layer is greatly increased. Thus, 
Francois et al. proposed the Xception architecture. Through 

Fig. 5 shows the effect of the number of evolutionary 
generation on fitness function in the proposed genetic 
algorithm when w = 0.5, and Ic = 100. In this experiment, we 
not only need to maximize the total target coverage rate but also 
focus on the objective function of minimizing the number of 
active sensors for conserving energy. In Fig. 5, the proposed 
genetic algorithm can only obtain a near-optimal solution with 
5.91% error rate compared to the optimal solution after 100 
iterations. However, the genetic algorithm can quickly 
approach the near-optimal solution. In our experiments, the 
genetic algorithm can obtain the near-optimal solution in less 
one second while the optimal solution takes about 300 hours by 
brute-force manner. 

 

Fig. 5. Fitness of GA when m = 50, w = 0.5 and Ic = 100. 

Furthermore, we continue the previous experiment by 
extending the iteration count from 100 to 500 to see the 
performance of proposed genetic algorithm. Fig. 6 shows the 
experimental result of our proposed genetic algorithm when m 
= 50, w = 0.5, and Ic = 500. In Fig. 6, we can see that, as the 
number of iteration increases, the fitness is getting better and 
better. After 500 generations, the genetic algorithm finds the 
optimal solution. In fact, the optimal solution can be obtained 
after around 495 generations. The computing time takes less 3 
seconds for running 500 generations. Therefore, our proposed 
genetic algorithm is effective for finding the optimal or 
near-optimal solutions for the object coverage problem. 

 

Fig. 6. Fitness of GA when m = 50, w = 0.5 and Ic = 500. 

Conclusions 
 

In this paper, we consider the target coverage problem in a 
directional sensor network. We are asked to find a better 

coverage for the directional sensors deployed on the target area 
while minimizing the total number of active sensors in order to 
save energy. We therefore propose a GA-based method to find 
the optimal or near-optimal solution for the target coverage 
problem. Simulation results show that our approach is an 
efficient and effective method for solving this problem 
compared to the traditional greedy methods. First, it is able to 
quickly find the optimal or near-optimal solutions. Second, our 
proposed algorithm is applicable to the situations as the number 
of sensors or the number of targets is getting larger.  
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